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Abstract *

We present calculations of the full spectra of Lyapunov
exponents for 8- and 32-particle systems in three dimensions with
periodic boundary conditions and interacting with the repulsive
part of a Lennard-Jones potential. A new algorithm is discussed
which incorporates ideas from control theory and constraint
nonequilibrium molecular dynamics. Equilibrium and
nonequilibrium steady states are examined. The latter are
generated by the application of an external field Fo through
which an equal number of particles are accelerated in opposite
directions, and by thermostatting the system using Nosé-Hoover or
Gauss mechanics. In equilibrium (Ee-O) the Lyapunov spectra are
symmetrical and may be understood in terms of a simple Debye
model for vibrational modes in solids. For nonequilibrium steady
states (F,+0) the Lyapuﬁov spectra are not symmetrical and
indicate a collapse of the phase-space density onto an attracting
fractal subspace with an associated loss in dimensionality
proportional to the square of the applied field. Because of this
attractor’s vanishing volume in phase-space and the instability
of the corresponding repellor it is not possible to observe
trajectories violating the second law of thermodynamics in spite
of the time reversal invariance of the equations of motion.

Thus, Nosé-Hoover mechanics, of which Gauss' isokinetic mechanics
is a special case, resolves the reversibility paradox first
stated by Loschmidt in 1876 for nonequilibrium steady state

systems.

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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1. Introduction

In recent years many chaotic continuous-time systems have
been studied, both experimentally and by computer simulation. A
useful way to characterize their stochastic properties is the
spectrum of Lyapunov characteristic exponents {};]) describing the
mean exponential rates of divergence and convergence of
neighboring trajectories in phase space [1-6]. For chaotic
systems the largest Lyapunov exponent is positive, whereas
regular motion exhibiting fixed points, limit cycles or KAM-tori
leads to Lyapunov exponents <0. Furthermore, the sum of all
positive Lyapunov exponents is the Kolmogorov entropy [4,6].

For any flow in M-dimensional phase-space described by the’

set of first order differential equations,

= 61 (1.1)
R I 78 SRS W DO ¢ (1.2)

there are M Lyapunov exponents of which at least one must vanish

=3  hy

(6]. In dissipative flows such as the famous Lorenz model of
turbulence or the Navier-Stokes equations of continuum mechanics
the phase-space volume is not conserved but shrinks, in the
course of time, resulting in the appearance of a strange
attractor. As a result the spectrum of Lyapunov exponents is not
symmetrical around zero, and the sum of all exponents is
negative. Two different connections between the Lyapunov
spectrum and the fractal dimension of the strange attractor have
been conjectured by Kaplan and Yorke [7,8] and Mori (9].
However, if the flow (1.1) is derived from an Hamiltonian at
constant internal energy, the spectrum of Lyapunov exponents is

symmetrical around zero,
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ATREAD SVIPI (1.3)
and two of the exponents must vanish. Any further constant of
the motion (such as one component of linear momentum) causes two
of the remaining Lyapunov exponents to vanish.

In this paper we are concerned with the calculation of the
full Lyapunov spectrum of a system of N particles interacting via

a repulsive Lennard-Jones potential

oo [ LS5 Tee, rerte
0 T 220

) ”

(1.4)

The total potential energy is assumed to be pairwise additive:

o - Z LTEN (1.5)
i<j

~ where ru is the distance between particles i and j. Both
quilibrium and stationary nonequilibrium states are considered.
Since the center of mass motion is conserved, there are M =
6(N-1) Lyapunov exponents and M{(M+1l) first order differential
equations to be solved simultaneously (see section 3). To keep
this number below a tolerable limit we treat the cases of N=8 and
N=32 particles corresponding to 1,806 and 34,782 differential
equations, respectively. We find that in the equilibrium liquid
case the Lyapunov spectra have a very simple appearance and
follow a power law in agreement with a previous model-calculation
for a somewhat simplified interaction potential {10,11]. We
defer the discussion of our results to sections 4 and 5.

The nonequilibrium situation is realized by introducing in
the Hamiltonian a constant external field Fo through which half
of the particles are accelerated towards opposite directions,
respectively. For this "color" - conductivity problem to achieve
steady state conditions a homogeneous Gauss thermostat is used

(12-14]. In this method the equations of motion of all particles
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are modified by the introduction of a constraint force designed
to keep the kinetic energy K of the system equal to a constant

value K, :

P /m | (1.6)
E(Q)- %P ‘

Here, g and p are the positions and momenta of the particles,

;.

|—s. ro-
[[]

respectively,

P (1.7)

E(i) =-/—D_+Cfe
= 1
is the total intrinsic force acting on a particle and F, is an
external force, ¢ being +1 for half of the particles and -1 for
the other half. The constraint force term - ;62 contains a

thermostat variable gc identical for all particles and determined

at any instant of time from

5, - mofalr (1.8)
T xLrer |
m LI &

In this "isokinetic" simulation the phase-space dimension and

consequently the number of Lyapunov exponents is the same as in
Hamiltonian mechanics (;6_50 ). Since the kinetic energy is a
constant of the motion, again two of the exponents vanish in the
equilibrium case (Ee- 0) as compared to one in the nonequilibrium
simulation (§e+0). For the latter the sum of all Lyapunov
exponents is found to be negative. The consequences of this
important finding will be discussed in section 5.

An even more general modification of Hamiltonian mechanics
has been recently invented by Nosé [15-17] making it possible to
controlbindependent thermodynamic variables during a simulation
of a dynamical system through integral feedback both in
equilibrium and nonequilibrium states (18-22). In the

formulation of Hoover [18,19,14] the equations of motion



generating isothermal flow assume the form

=B/m

i
T =% 7=E(-37 (1.9)
: |

ch ()

where F(g) is given by (1.7). Because of linear momentum
conservation and the inclusion of the thermostat variable § as an
independent variable, the phase space dimension and consequently
the number of Lyapunov exponents is 6(N-1)+1. K = 2:21/2m is the
kinetic energy and K,= 3NkT/2 its long time averaged value. 1In
thermostatted equilibrium (EQ-O) the corresponding distribution

function turns out to be canonical,
. =xp{-HD) kTS (1.10)
P JdDep{- H(D)/RT)

where the internal energy of the total system (including the

f

thermostat) is defined by

H(T) = K + § +3N4Te*gt /2 (1.11)

T is an unspecified parameter related to the response time of
the thermostat. 1In the limit qf infinitely fast response (T = 0)
Nosé's isothermal dynamics becomes indistinguishable from
Gaussian isokinetic flow (1.6).

It is important to notice that both the Gauss and Nosé
equations of motion are invariant with respect to time reversal.
In Nosé's original Hamiltonian the friction variable r, arises as
a momentum variable and consequently changes sign in the
time-reversed motion as well as the particle momenta p, whereas
the coordinates g and forces F(g) remain unchanged.

As a simple illustration of how Nosé-mechanics works the
one-dimensional problem of a particle in a constant external

field Fq will be treated in the following section. In section 3
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various methods for calculating the complete spectrum of Lyapunov
exponents for many body equilibrium and nonequilibrium systems
are discussed. The results of our calculations are presented in

section 4 and are further discussed in section 5.



2. One-dimensional "Nosé-Hoover"” dynamics of a particle

in a constant field.

As a simple illustration of Nosé-Hoover mechanics we
consider the one-dimensional motion of a particle in a constant
external field Fy. Since the long time averaged kinetic energy
assumes the value K,= kT/2, where T is the temperature maintained
by the Nosé thermostat, the equations of motion obtained from

(1.8) are:

g = p/m

P R-Tp (2.1)
. S

A N

The friction variable § becomes more negative whenever energy is
to be fed into the system, and more positive when energy is to be
extracted. A projection of possible trajectories onto the (p¥)-
plane is depicted in Fig.l for a reduced thermostat response time
t(Eé/{EI?) = 1. The flow equations (2.1) are time-reversible
with p and § replaced by -p and -% in the time-reversed motion.
This corresponds to inversion through the origin in Fig.l. The
motion in g direction becomes uniform for t-+o and is associated
with a Lyapunov exponent A =0. The stable fixed point

( ka,F‘e/M) in (pg )-space is an attractor characterized by
Lyapunov exponents R%5=-fé/2fﬁf5, if the thermostat response
time T'<f§EIEVFe. Time reversal transforms this attractor into
an unstable fixed point (- ka,—Fe/ mkT) which is called a
repellor and which is characterized by positive Lyapunov
exponents. The flow in Fig.l is reminiscent of a dollar sign,
always leaving the vicinity of the repellor and heading for the

attractor. This is true both in the original and the
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time-reversed case.

This simple example serves to introduce the concept of a
repellor as a set obtained from an attracting set by invoking a
time reversal transformation. We shall use it in section 5 to

discuss the irreversible behavior of steady-state nonequilibrium

systems.
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3. Computational methods.

Basically two algorithms for the calculation of the complete

spectrum of Lyapunov exponents have been proposed (23,24,5,2,3].
In all these schemes - in addition to the reference trajectory
(1.1) - M further trajectories are calculated, which are
differentially separated from the reference trajectory and which
obey the set of linearized equations of motion obtained by
differentiating (1.1):

d (.
e (90) =4 -

Here, the coefficient matrix

]__?(E) - ?_f-;(f) (3.2)

is an Mx M matrix and couples the reference trajectory to the

cd, s =12, M. (3.1)

=t )

Nw)

various differential offset vectors ét in "tangent space". An
arbitrarily oriented set of orthonormal vectors may be chosen as
initial conditions for the M different vectors ée. However, as
is well established for chaotic systems, these vectors do not
stay orthogonal to each other for t>0 but start rotating into the
direction of maximum phase-space growth and eventially aiverge.
To avoid this problem a Gram-Schmidt reorthonormalization
procedure may be repeatedly applied to the vector frame {éc }
after every few timesteps [24,5,2]. In this way we obtain that -
after some transient time - §1 tends to point into the direction
of phase space growing most rapidly proportional to expat, that
41’é1 span a subspace whose area grows most rapidly proportional
to exp(A +},)t, and so forth. Generally, é,,éz ""ét span a
subspace with maximum volume growth proportional to

exp(k'+ll+...+1¢)t. From this sequence A, 1,,...,\, may be

- 10 -



obtained. Most determinations of Lyapunov exponents have made
use of this algorithm we shall refer to as "method A" [2,5,6].

As an alternative to the Gram-Schmidt reorthonormalization
scheme a matrix orthogonalization technique has been proposed by
Eckmann and coworkers [3] (method B).

We have recently introduced a third method [10,25] henceforth
referred to as "method C" utilizing ideas from control theory and
constraint dynamics (14). This approach has been also suggested
by Goldhirsch et.al.[26]. Instead of allowing the linearized
trajectories (3.1) to evolve freely and calculating the Lyapunov
exponents by periodically rescaling the differential offset
vectors él in tangent space as in method A, these vectors may be
constrained to stay normalized and orthogonal to each other at
all times

t
$.(8) . 4y (8) = 4 (3-3)
(JU is Kronecker’s symbol and t denotes the transpose). To
achieve this, constraint "forces" must be introduced into the

evolution equations (3.1):

i b P' é1 B )"él .
éz : Péz. B )‘z;é1')u§.:.

(3.4)

53& = D8, - X8t d m R, S

-H M1 =1 MM —-M
The magnitude of the constraint forces is governed by Lagrange
multipliers )ij which may be calculated from the requirements
(3.3). For example, differentiating (3.3) for i=j, we find:

é:‘-éi = 0

Insertion of éi from (3.4) gives for the main diagonal elements:

A, = di.D.4 , i=t2,., M, (3.5)

(17 t == bl

- 11 -
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Similarly, we find for i%j

’_S.f,'é..', +£.5;'£S:L =0

and

Ao & .D.d ¢ 8E.D.g . (3.6)

i) =4 - <}
The time evolution of § ,4,,....,9, is a rotation in tangent
space where an arbitrarily oriented set of orthonormal vectors
may serve as initial condition for the set [ét(o)]. The Lyapunov
exponents are given by the time averaged diagonal elements of the

Lagrange multipliers

W

2 o- b [Ty (1)

max °

The theoretical merits of method C are twofold: Firstly,
£he Lyapunov exponents are evaluated directly from the evolution
equations (3.4) with their symmetry properties with respect to
time reversal explicitly displayed. Secondly and more important,
the angular velocities W, of the rotating set of orthonormal
vectors {étl are related to the frequencies of collective
excitations or phonon frequencies of the system. This will be
shown in more detail in a forthcoming publication. 1In this
connection it is useful to recognize that the dynamical behavior
of the orthonormal set {ét} is local in phase-space. By this we
mean that the Lagrange multipliers lq and consequently the
angular velocitiest)e depend only on the instantaneous
phase-point r(t). They may be generated by starting at [(t) and
integrating the reference trajectory (1.1) backward in time for a
time interval At. At [(t-At) an arbitrarily oriented set of
orthonormal unit vectors (ée(t—At)} may be used as initial
condition for a subsequent integration forward in time of both
(1.1) and (3.4) to find the current {ée(t)}, IQ' andcde at "(t).
For large enough time intervals At the result will be independent

- 12 -
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of the initial conditions for (éc} at t-At. The local
frequencies W, may become useful for semiclassical path-integral
methods introduced recently [27]).

There are, however, some problems in a practical
implementation of method C. The extensive vector-matrix
operations in (3.5) and (3.6) necessary at each timestep decrease
the calculation speed on a VAX-750 computer by a factor of 4 as
compared to method A for the calculation of the full Lyapunov
spectrum of an eight particle system in 3 dimensions (M=42).
Apother minor problem arises from the restricted computational
accuracy. Minor deviations are magnified in the course of time
resulting in a noticeable violation of the condition (3.3) after
a certain number of timesteps. However, this can be easily
remedied by a periodic application of the Gram-Schmidt
reorthonormalization scheme with negligible expense in computer
time.

In a practical realization of method C a convenient way of
performing the time averages over the Lyapunov exponents (3.7) or
of any other dynamical quantities such as the potential '
energy @ is to add these quantities to the list of variables
[i 'é:"""én } integrated by the integration method in use.

For all our simulation results reported in the following section
a fourth order Runge-Kutta integration with a reduced timestep of
0.001 was employed. Reduced units with m,¢”and £ acting as units
of mass, length and energy together with periodic boundary
conditions are used. The Lyapunov spectra obtained by methods A
and C for the 8-particle systems agreed to better than 5% if in
both runs the trajectories were followed for 10° timesteps. It
is interesting to note that in very stiff systems the
off-diagonal Lagrange multipliers XH; associated with the most
negative Lyapunov exponent 3, may become extremely large making

it difficult for the algorithm to keep 4§, normalized and
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orthogonal to all the other vectors é',...,én_'. If this happens
Gram-Schmidt reorthonormalization must be used every few time
steps to prevent the solution for IM to become unstable. .For
the 32-body fluids also reported in the following section only

method A has been used.

- 14 -



4. Lyapunov spectra of 8- and 32-body fluids

Fig.2 shows Lyapunov spectra for three thermodynamic states
of an equilibrium (isoenergetic) B8-body system obeying
Hamiltonian equations of motion and periodic boundary conditions.
All data are in reduced units. Only positive exponents are
calculated and indicated by the symbols in this figure. The
negative exponents can be easily obtained from the symmetry
condition (1.3), where M=42. The exponents are arranged such
that the index n=(M/2)-i, i=1,2,...,M/2, denotes the number of
positive Lyapunov exponents less or equal to a given exponent,
A(n). The spectra have a very simple appearance and do not
exhibit any fine structure. They can be approximated well by a

power law,

as shown by the smooth curves in Fig.2, which are extended also
to the full range of negative Lyapunov exponents. The fit
parameters o and/3 are collected in Table 1 together with
relevant thermodynamic information on the states considered.

A very similar result has been found by us already for a
simpler, but also purely repulsive pair potential [10,11]). Table
1 shows that the exponent » is close to 1/3 in all cases, which
is precisely the value derived from a Debye model for the
distribution of vibrational frequencies in a solid. 1In such a
model the number of modes dn between frequencies ¥ and Y+dV is
proportional to vy, Integrating this relation one finds

P4

An)x n' ,which is of the form (4.1) with foepye = 1/3. As may

be verified from Table 1, the maximum Lyapunov exponent Amax is

also close in value.to the Debye frequency V.. The latter may be
D Y

- 15 -
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estimated from the second derivative of the pair potential,

¢;(R), calculated at the particle separation R for which

qS(R)-k'r:

1wy, = [¢(Ry/m]1™" (4.2)

In figures 3 to 5 analogous spectra are shown for
thermostatted isokinetic 8- and 32-body systems, where Gauss®
equations of motion (1.6) have been applied. Let us discuss the
case of field-free equilibrium first (Fa=0 in fig.3 and 4). The
power law (4.1) provides a good fit of the numerical Lyapunov
spectra. The fit parameters and further relevant information for
these systems is collected in tables 2 and 3, respectively.‘ The
exponent 3 is again in quite good agreement with the Debye result
1/3, and the maximum Lyapunov exponent seems to agree
satisfactorily with the estimation of 25 based on (4.2). At
first the rather close agreement of the Lyapunov spectra with
predictions derived from a simple Debye model is surprising. In
hindsight it appears plausible in view of the fact that the
coefficient matrix (3.2) is formally similar to the expansion
coefficients of the pétential enerqgy § in powers of atomic
lattice site displacements used in the theory of lattice dynamics
of harmonic solids [28]. However, a close inspection of figure 3
reveals systematic deviations of the numerically obtained points
from the fit particularly at small values of 2 and n. These
deviations also persist whether method A or method C is used for
the simulation of the spectra. It remains to be seen whether the
inclusion of an attractive part to the pair potential has a
noticeable influence on the shape of the Lyapunov spectra.

Nonequilibrium steady state results are shown in Figs.3 and 5.
As expected, the application of an external field, F %0, destroys
the symmetry of the Lyapunov spectra. They are not shifted
uniformly to more negative values ofA , but the positive branch

- 16 -



T RN T
of the spectra decreases more strongly than the negative one. 1In
tables 2 and 3 we also list the sum over all Lyapunov exponents
which is equal to the phase-space "compressibility" averaged over
the nonequilibrium ensemble:

(Arefar fr 0 f(r,y - 32, (4.3)

Led

Here, £(I',t) is the distribution function obeyiné the general
Liouville equation ([27,22]

2y %,(fr) 0 (4.4)
The tables 2 and 3 also contain the Kolmogorov entropy hK’ which
according to Pesin is the sum over all positive Lyapunov

exponents (28,6]:

he = ¥ 2
A»>0

hK is the mean rate at which information about the system is lost

in the course of time.

(4.5)

With the external field Ee applied, the system experiences
also a dissipative flux in the direction of the field, the color

current, defined by

3= 2 cp/m

where c=+1 is the color introduced in (1.7). We have measured

(4.0

this quantity from which a steady-state color conductivity may be

derived according to

{I> =~ V=xF

Ris also collected in the tables. The error bars for ¢ are

(4.7)

estimated from the numerical noise for the components of <J>

perpendicular to Fe which theoretically should be zero.
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5. Irreversibility in nonequilibrium steady-state systéms

The internal energy of the system is defined by

é*zg . (5.1)

Its rate of change is given by

l:l(f) - f%; = -2K,g + J(H)-Fp (5.2)

where (1.6,7) have been used, and J is the dissipative flux

defined in (4.6). The steady-state condition <H>=0 therefore
gives

(%7 = ZK —{(J)- Fe acF >0 (5.3)

O
where in the second step we have used (4.7). The long time

average of 56 acts as a positive friction coefficient removing

the energy from the system which is continuously suppljed by the

external field.

For the phase-space compressibility we find:

where 3(N-1) gives the dimension of momentum space. Upon

averaging the second term in (5.4) vanishes and we find:

Y= =305 - £ (I)F, - (5:5)

Combining this equation with (5.3) yields

(A=~ [3(N-1) 1] % * fe" . (5‘.4)

4 N



Since <A > in (4.3) is equal to the sum of all Lyapunov
exponents, (5.6) provides a convenient test of the numerical
consistency of the data. We find very good agreement of (/QL
calculated from (5.6) with the parameters taken from tables 2 and
3, respectively, with ZA for not too large fields Fo<2.

For nonvanishing external fields the time averaged sum of
Lyapunov exponents, 2 A =<A.>, is always negative and varies
according to (5.6) with the square of the applied field. This
result has extremely interesting consequences and provides an
understanding of the irreversible behavior of nonequilibrium
steady-state systems in spite of the time reversal invariance of
the equations of motion [29,30]). It means that an arbitrary
hypervolume in phase-space centered on a trajectory shrinks in
the course of time and develops into a very complicated fractal
like object. That systems in nonequilibrium steady states
develop into "strange attractors" has been first observed in
simulations of a periodic two-dimensional classical Lorentz gas
driven by an external field (31] and of a single-body,
one-dimensional Frenkel-Kontorova model for isothermal electronic
conduction (32]. The self-similar, sheet-like structure of these
fractal attractors is clearly visible for the problems mentioned
above involving a phase-space of only three dimensions. For the
high~-dimensional phase-spaces treated in this paper it is
obviously not possible to generate similar plots. We proceed by
evaluating the dimensionality of the strange attractors.

The Lyapunov dimension d, may be estimated according to

Kaplan and Yorke [7,8] from

}
d'i*M (57)

) lkj+1'

- 19 -
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where the integer j is determined from the conditions
] +4

Sharo , TR <o, (5.8)

tx { ¢

The results for d, are also listed in tables 2 and 3. 1It has
been argued that the dimensionality loss of the phase-space

attractors with respect to the equilibrium system (for which

d, (0)=M) is approximately given by
ad, = d (F)-d (o) ~ S/ kA, (5:9)

where

§ = -hfdr (0 taf(rH) (5. 10)

is the information theory entropy; S is the rate of irreversible

entropy production and may be easily calculated [(22]:

S/k = -fd,[‘cnf% =-fdf&f[-%.(ff)]=

“-ferf R - fars2eE < (A

The first step follows from the normalization of £, the second

(s 1)

l'jlﬂ~

from inserting the Liouville equation (4.4). The final steps
follow from partial integration and the use of (5.4). We

conclude that

§.12)
ad, ~ Ta/a,, (
This prediction is verified by our numerical results for not too
large external fields, géiz. Obviously the dimensionality loss
'is an extensive quantity and persists in the thermodynamic limit.
The fact that nonequilibrium systems quickly collapse onto a
fractal subspace of the complete equilibrium phase-space with an
associated loss in dimensionality is a general phenomenon. 1In
addition to the problems mentioned above it has been observed
also by Morriss in a study of planar two-bodey shear'flow

(33,34]).
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The consequences of this important result with respect to
the second law of thermodynamics has been established very
recently [29,30,32]: Only trajectories which on the average
convert heat into work and which are characterized by a negative
friction <g> (or <Gq>) will violate the second law. In view of
the time reversal invariance of the Nosé-Hoover or Gauss
equations of motion (1.9) and (1.6), respectively, these
trajectories must be precisely on the associated repellor and
must be propagated backward in time. The repellor states are
obtained from the strange attractor by the time reversal
transformation g+g, p=+-p ,¥¢ — -¥ (or Ce™ -Cs) and consequently
form again a fractal object with a dimensionality d, less than
the complete phase-space dimension M. Since time-reversal also
means a sign change for the Lyapunov exponents the repellor
states are characterized by a positive éum of Lyapunov exponents
and a positive phase-space compressibility <A>. It follows that
the repellor is unstable: The slightest deviation will blow up
very quickly and the trajectory will end up on the attractor
again. Ome concludes (a) that an exact localization of the
repellor is impossible because of its vanishing phase-space

volume, and (b) that any approximate effort to localize and

follow a time-reversed trajectory on the repellor is impossible
because of its inherent instability. Thus, trajectories
violating the second law do not occur in spite of the time
reversal invariance of the equations of motion. Nosé-Hoover
mechanics (1.9) - including Gauss’ isokinetic equations (1.6) as
a special case - therefore resolves the famous reversibility
paradox first stated by Loschmidt in 1876 (35]) and discussed
further by Boltzmann (36], for the special case of nonequilibrium

steady states.
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Table 1:

I II III

16.0 16.0 22.87
0.85 0.70 0.684
*) 10.20 8.40 8.21
1.80 1.42 0.79
12.00 9.82 9.00
150 100 100
1.33 1.22 1.02
0.32 0.32 0.31
3.22 3.03 3.01
3.52 3.30 2.70
54.2 50.1 40.4

Parameters characterizing the isoenergetic 8-body system
studied in Fig.2. All quantities are given in reduced units.
V is the volume, T the temperature, K the kinetic energy,
che potential energy, E the total energy. tmax is the time
for which the trajectory was followed after the decay of
transients. « and  are optained by fitting (4.1) to the
positive Lyapunov exponents. ¥, is an estimate for the

Debye frequency and 2.3 is the maximum Lyapunov exponent.

h, = ¥ A is the sum over all positive exponents.
A>»0

*) The center of mass velocity is kept constant.



Table 2:

0.0
16.0
1.0
12.0
2.21
14.21
220
1.27
0.37
3.40
3.79
57.6

42

1.0
16.0

1.0
12.0

2.20
14.20
56

3.72

41.64
0.094+0.013

2.0
16.0
1.0
12.0
2.22
14.22
350

3.67

53.8

-5.9

40.51
0.099+0.004

3.0
16.0

1.0
12.0

1.99
13.99
88

3.37
a7.5
-14.3
38.3
0.108+0.007

Parameters for the isokinetic 8-body simulations for various

external fields E,. All quantities are given in reduced units.

In addition to the symbols explained in table 1, d, denotes the

Lyapunov dimension, 3¢ the conductivity and JA the sum over

all Lyapunov exponents.

*) The center of mass velocity is kept constant.



2.0 3.0

Fe 0.0 1.0
v o 64.0 64.0 64.0 64.0

T 1.0 1.0 1.0 1.0

Ko *) 48.0 48.0 48.00 48.00
<§> 8.33 8.87 8.99 7.62
<E > 56.33 56.87 56.99 55.62

t max 5.8 26.0 10.4 8.4

LS 0.634 - - -

M 0.385 - - -

Y, 3.40 - - -

Amax 3.66 3.66 3.57 3.18

h 242 238 225 181

A 0 -6.8 -27.1 -85

d 186.0 184.2 178.9 163

e - 0.108+0.005 0.109+0.005 0.136+0.008

Table 3: Parameters for the isokinetic 32-body simulations for various
external fields F,. All quantities are given in reduced units
and are explained in tables 1 and 2.

*) The center of mass velocity is kept constant.
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Figure captions

Fig.l Projection of the flow (2.1) onto the pY-plane for a
reduced thermostat response time TF, /ymkT=1. p* = p/mGT,

S*z;%/ﬁmi

Fig.2 Lyapunov spectra for an 8-body fluid in isoenergetic
equilibrium for 3 thermodynamic states I, II and III
specified in Table 1. Only positive exponents are
calculated and indicated by the symbols. The smooth
curves represent a fit of (4.1) to these data and are
extended also to the full range of negative exponents.
All quantities are in reduced units, with the potential

parameters &€ and 6 of (1.4) and the mass m all set equal

to unity

Fig.3 Full Lyapunov spectra for an isokinetic 8-body fluid for
various reduced external fields F, as indicated by the
labels. The simulation results are shown as symbols,
whereas the smooth line is a fit of (4.1) to the positive
exponents for the equilibrium case (Ee’°)° Thermodynamic
states and relevant parameters are listed in Table 2. All

quantities are in reduced units as above.



F;g.d Lyapunov spectrum for an isokinetic 32-body fluid at\
equilibrium (F,=0). Thermodynamic state parameters are
listed in Table 2. Simulation results are indicated by
the circles, whereas the smooth line is a fit of (4.1) to
the positive exponents. All quantities are in reduced

units as above.

Fig.5 Full Lyapunov spectra for an isokinetic 32-body fluid for
various reduced external fields Fo as indicated by the
labels. The simulation results are shown as symbols. The
smooth curve is a fit of (4.1) to the positive exponents
for the. equilibrium case (EQ-O) depicted in Fig.4.
Thermodynamic and related information is given in Table 3.

All quantities are in reduced units as above.
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